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Abstract

We present PocketNeRF; a lightweight pipeline for rapid,
mobile-ready reconstruction of indoor environments from
sparse smartphone images. Built on Instant-NGP’s hash-
encoded Neural Radiance Fields, we introduce two or-
thogonal improvements: (1) structural priors based on
Manhattan-world assumptions and semantic plane detec-
tion that impose geometric constraints during optimiza-
tion, enabling sharper surfaces and faster convergence; and
(2) adversarial content-aware quantization (A-CAQ), which
learns a scene-specific bitwidth schedule to compress hash
tables and MLP weights without degrading visual quality.
These enhancements reduce training time, shrink model size
by an order of magnitude, and enable interactive, photore-
alistic rendering on consumer mobile devices.

1. Introduction

Reconstructing detailed 3D models of indoor environ-
ments from a handful of handheld images remains a chal-
lenging, but impactful, task for applications in augmented
reality, real estate visualization, and interior design. Neural
radiance fields (NeRF) pioneered novel-view synthesis by
learning continuous volumetric scene representations, but
its original formulation is quite slow for practical use [5].
Instant neural graphic primitives (Instant-NGP) speeds up
NeRF training and rendering by replacing positional encod-
ings with a multiresolution hash table, which allows for
high-quality reconstructions in minutes rather than hours
[6]. However, even Instant-NGP requires substantial com-
pute and memory, which limits its usability on mobile de-
vices and under sparse image capture conditions.

Standard NeRF pipelines struggle in indoor environ-
ments for two major reasons. First, they must relearn struc-
tural patterns as well as geometric motifs from the ground
up for every scene, regardless of the fact that indoor spaces
exhibit strong regularities such as planar walls, furniture
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with orthogonal arrangements, and Manhattan-world geom-
etry. Second, the computational and memory requirements
of hash tables and multilayer perceptrons (MLPs) exceed
the constraints of mobile devices, which in turn prevents
real-time deployment for consumer applications.

In this work, we present PocketNeRF, a lightweight
pipeline that addresses both of these challenges via two
complementary approaches, structural priors for indoor
scenes and content-aware quantization. Our work builds
on HashNeRF, a PyTorch implementation of Instant-NGP,
and introduces novel work specifically designed for mobile-
ready indoor reconstruction from sparse viewpoints.

Our first approach is the development of a structural
prior framework that utilizes Manhattan-world assumptions
in addition to semantic plan detection to push optimization
toward indoor geometry. More specifically, our approach
goes on to merge a Manhattan frame estimation technique
that employs surface normal clustering with a semantic plan
detection technique that pinpoints regions most likely to be
floors and walls. Therefore, using these methods, we are
able to introduce a structural loss that upholds surface nor-
mal alignment with the constructed Manhattan coordinate
frame, promote planarity in semantically selected regions,
and maintains local surface normal consistency.

Our second approach is the implementation of Adver-
sarial Content-Aware Quantization (A-CAQ), which adap-
tively learns scene-specific bitwidths for both multiresolu-
tion hash embeddings and MLP components. The motiva-
tion behind this approach is to support mobile deployment.
To this end, our quantization framework addresses the crit-
ical challenge of hash embedding values with tiny magni-
tudes through a calibration mechanism that establishes ap-
propriate scaling factors. The system uses differentiable
”soft bitwidth” parameters that vary between 2 and 32 bits.
More specifically, we go on to use straight-through estima-
tion to allow for gradient flow through discrete operations.
By employing dual optimization with minimal description
length objectives, our approach automatically discovers het-
erogeneous bitwidth allocations that reflect scene complex-



1ty.

Additionally, we implement a complete pipeline by
utilizing a custom preprocessing system that handles
consumer-grade smartphone images. This pipeline takes
into account exposure value estimation, camera pose ex-
traction via COLMAP, as well as automatic quality assess-
ment. Our evaluation on real indoor scenes captured with
commodity hardware shows that structural priors acceler-
ate convergence while maintaining reconstruction quality,
and content-aware quantization achieves compression ratios
exceeding while keeping PSNR within full-precision base-
lines.

2. Related Works

Our work builds directly on neural radiance fields. NeRF
introduced encoding a scene as a continuous function map-
ping 3D position and view direction to volume density and
emitted color [5]. This enabled photorealistic novel view
synthesis from sparse images but required hours-long opti-
mization per scene. Later variants improved speed via hier-
archical sampling, alternative encodings, or hybrid voxel-
MLP schemes. Nonetheless, real-time reconstruction of
large indoor scenes on commodity hardware remains rather
impractical.

Instant-NGP alleviates this by compressing the posi-
tional encoding into a multiresolution hash table, trained
jointly with a small MLP and optimized using fully-fused
CUDA kernels [6]]. This greatly reduces training time from
hours to minutes (or even seconds) while preserving visual
fidelity. As such, Instant-NGP was quickly established as
the de-facto baseline for interactive radiance-field recon-
struction. Our project adopts Instant-NGP as the starting
point for all further experimentation.

However, standard NeRF piplines still relearn structural
patterns and geometric motifs (e.g. planar walls, orthogonal
furniture, monotone textures) from scratch. Recent work
such as NeRFPrior shows that a radiance-field trained on
a single scene can itself serve as a geometric and photo-
metric prior [9]. Its density field provides coarse geometry,
and its color field enforces visibility constraints during SDF
reconstruction. Unlike data-driven priors, this approach re-
quires no external datasets and converges within minutes.
Inspired by this principle of incorporating geometric struc-
ture, we implement Manhattan-world assumptions and se-
mantic plane constraints that leverage the inherent geomet-
ric regularity of indoor environments to guide Instant-NGP
optimization when only sparse views are available.

Furthermore, although fast on desktop GPUs, Instant-
NGP’s MLPs and hash tables still exceed the compute and
memory limits of mobile devices. Content-Aware Radi-
ance Fields introduce Adversarial Content-Aware Quanti-
zation (A-CAQ), a differentiable framework that learns per-
scene, per-layer bitwidths [4]]. By aligning the complexity

of the model with the scene’s intricacies, A-CAQ signifi-
cantly reduces model size and compute cost with minimal
accuracy loss. We adopt this framework to quantize both the
hash table and MLP to sub-8-bit precision tailored to each
scene. As such, by combining Instant-NGP, NeRFPrior-
style guidance, and A-CAQ, our system targets fast con-
vergence on a few smartphone images, yielding a compact,
mobile-friendly 3D reconstruction pipeline.

3. Data

Since NeRFs revolve around overfitting small datasets,
we seized the opportunity to create a proprietary dataset
from a location on Stanford campus using iPhone cameras.
More specifically, we collected images from the Norcliffe
common room. As an example, here are some images that
we collected for our norcliffe_common_room dataset:

Figure 1. Images from norcliffe_common_room dataset.

NeRF takes as input a 5D coordinate consisting of a
3D spatial location (z,y, z) in the scene, and a 2D view-
ing direction, expressed as angles in spherical coordinates
(0, ). Stock iPhone photos do not capture this metadata,
prompting us to use a third-party application Polycam [7]]
for photo capture. However, even with Polycam, we en-
countered technical challenges that required preprocessing
to obtain NeRF-compatible inputs. The primary challenge
was missing metadata. Polycam’s exports lacked the param-
eter of exposure time, which is crucial for training to have
accurate radiance estimation. To address this limitation, we
developed a two-stage pre-processing pipeline.

First, we extract camera poses (position and orienta-
tion) using COLMAP’s structure-from-motion implementa-
tion [8]], a common practice among the NeRF papers we’ve
reviewed. For each indoor environment, we process the im-
ages using feature extraction with the simple pinhole cam-
era model, followed by sequential matching to establish cor-
respondences between frames. The subsequent mapping
stage reconstructs sparse 3D points and camera parameters,
which we then convert to Instant-NGP’s transforms.json
format.

Second, we implemented a hybrid approach for exposure
value (EV) estimation. When EXIF data is available, we
calculate EV directly using:
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For images missing metadata, we estimate EV using a
linear luminance-based approach. First, we convert the
sRGB image to linear color space to accurately represent
scene radiance. We then calculate the luminance channel
by combining the RGB channels with standard weighting
coefficients. To improve robustness against outliers from
bright light sources or dark shadows, we trim the luminance
distribution by excluding values below the 5! and above
the 95" percentiles. The EV is then calculated as:

EV =log, <£> 2)
0

where L is the mean of the trimmed luminance values
and L is the reference middle gray value (we set to 0.18).
This approach, while imperfect, provides reliable exposure
normalization across lighting conditions, ensuring consis-
tent appearance during NeRF optimization.

Additionally, our pipeline addresses several mobile-
specific issues, including automatic rotation correction and
downsampling to a maximum dimension of 1600 pixels to
manage memory constraints. The processed images are
stored as lossless PNGs to avoid further compression. This
pre-processing enables us to transform casual smartphone
captures into a dataset suitable for NeRF optimization.

For our few-shot learning approach, we collected im-
ages from the Norcliffe common room using Polycam’s
technique of taking a video and sampling frames from that
video.

4. Methods

We base our project on HashNeRF [1], a PyTorch im-
plementation of Instant-NGP, to shift our focus towards
the extensions we are researching. To implement learned
structural priors and content-aware quantization, we extend
the original codebase with architectural additions and mod-
ifications. We implement structural_priors.py,
which allows for Manhattan frame estimation and semantic
plane detection — not just generic density alignment. We
also create quantization.py, which provides the core
quantization infrastructure.

Heavy modifications were made to run_nerf.py,
run_nerf_helpers.py, and hash_encoding.py to
integrate the structural priors and quantization workflows
throughout the training pipeline. Additionally, we imple-
ment our own metric_logger.py to track metrics and
model compression statistics during training as we found
the existing logging insufficient.

4.1. Structural Priors

Building on recent advances in Manhattan-world as-
sumptions [3] and structured neural rendering [2], we de-
velop a framework for integrating geometric priors that ac-
celerate and improve reconstruction quality in indoor en-
vironments under sparse input. Our approach combines se-
mantic plane detection with Manhattan coordinate frame es-
timation to impose principled geometric constraints during
neural radiance field optimization.

Our structural prior framework consists of two core
components working in tandem. First, we implement a
ManhattanFrameEstimator that recovers the dom-
inant orthogonal directions through clustering of surface
normals. More specifically, this estimator uses k-means
clustering on normalized surface normals to identify three
principle directions, then applies SVD decomposition to
make sure of orthogonality.

Second, we build a SemanticPlaneDetector that
identifies floor and wall regions based on surface nor-
mal orientations relative to the estimated Manhattan frame.
Floor regions are detected by measuring alignment with the
vertical direction, while wall regions are detected through
horizontal normal alignment. This semantic understanding
helps us to target and apply geometric constraints where
they are most effective.

Furthermore, our structural prior loss combines three
complementary terms that use both geometric and seman-
tic understanding:

structural
L = Alﬁmanhanan + AQ‘Cplanarity + >\3£consislency (3)

Explaining each piece of the equation above, first, the
term L panhawan €nforces that surface normals in semantically
identified regions align with the estimated Manhattan coor-
dinate frame. For floor regions, we constrain normals to
align with the vertical axis, while wall normals are encour-
aged to align with horizontal Manhattan directions:

£ﬂoor = IEreﬂoor[l - |nr : émanhattan‘] (4)
Lyal = Erewall[l - max(‘nr . fi‘manhattan|a |TL7~ : Qmanhanan‘)]
)

Next, we have Lpjanaiy. Following StructNeRF [2],
we apply semantic-aware smoothness constraints that are
stronger within identified planar regions (e.g. floors and
walls) and weaker in transition areas. By doing so, we pre-
serve sharp geometric features while encouraging planarity
where it is expected:

ﬁplanarity = Ei,jeﬂoor [wﬂoor | d7. _dj H +Ei,j Ewall [wwall |d1 _dj H
(6)

Lastly, the term Lconsisiency implements local smoothness
of surface normals weighted by spatial proximity and depth



similarity, which helps to reduce noise in normal predic-
tions while also preserving geometric discontinuities:

Econsistency == Ei,j [wspatial(iv .7) 'wdepth(ia ]) : (17711 TL])] (7)

Here, Wgpatal and wyepn are proximity-based weights that
decay with spatial and depth distance.

Tying it all together, our structural priors then inte-
grate with the HashNeRF training pipeline through the
combined_structural_losses function, which cal-
culates all structural terms and combines them with the stan-
dard photometric loss. Our framework also uses adaptive
thresholds to handle varying scene complexity and to en-
sure stable training. This helps enable high-quality indoor
scene reconstruction from sparse viewpoints by leveraging
the inherent geometric structure of indoor environments,
which significantly reduces ambiguity in texture-sparse re-
gions and improves geometric accuracy at planar bound-
aries.

4.2. Content-Aware Quantization

To enable deployment on mobile devices with limited
compute and memory resources, we implement Adversar-
ial Content-Aware Quantization (A-CAQ) following Liu
et al. [4]. Our approach adaptively learns scene-specific
bitwidths for both the multi-resolution hash embeddings
and MLP components, achieving substantial model com-
pression while preserving visual quality.

We employ a differentiable quantization framework that
allows the model to learn optimal precision levels during
training. For each quantizable parameter tensor v (18 total
in our experiment), we introduce a learnable “soft bitwidth”
parameter b € [2, 32] that continuously varies between min-
imum and maximum bit constraints. During training, this
soft bitwidth is rounded to get the actual number of bits
used: B = |b].

The quantization process maps continuous values to dis-
crete levels, much like reducing an image from millions of
colors to a limited palette. For this mapping, we need two
key components: a step size s that determines the spac-
ing between discrete levels, and a zero-point Z that shifts
the quantization grid. For symmetric quantization (used for
network weights that can be positive or negative), we cen-
ter the grid around zero. For asymmetric quantization (used
for ReLU activations that are always positive), we shift the
grid to start at zero, avoiding wasted negative levels. These
parameters are computed as:

if symmetric
if asymmetric
(®)
where 7, is a learnable parameter controlling the range
of values we can represent, and vy,,x tracks the maximum
value seen for asymmetric cases.

s= -1V z= 0
2B -1’ | round(vmax/$)

During the forward pass, we simulate quantization by
converting continuous values to discrete levels and back.
This process follows three steps: scale the input values to
match our quantization grid, round to the nearest integer
level, then scale back to the original range:

v = s - clamp(round(v/s + Z), ¢min, qmax) — S Z (9)

The valid integer levels depend on whether we’re using
symmetric or asymmetric quantization:

[0,28 —1] if asymmetric

[-(2B-1),2B-1 —1] if symmetric
(10)

However, rounding creates a challenge: it has zero gradi-
ent everywhere, which would normally block learning. We
solve this using the straight-through estimator trick. During
the forward pass, we perform actual quantization. During
backpropagation, we pretend the rounding never happened
and let gradients flow through unchanged. This allows the
model to learn optimal bitwidths and ranges despite the dis-
crete nature of quantization.

Our implementation addresses a critical challenge in
quantizing neural radiance fields: the tiny magnitude of
hash embedding values. Standard quantization schemes fail
when applied to embeddings initialized near 10~*, as the
quantization grid becomes too coarse relative to the value
range. We solve this through a calibration mechanism that
tracks running statistics during initial training iterations.
This calibration phase establishes appropriate range scales:

[qmirn Qmax] = {

for symmetric

= {2 - max(|Vmin|, [Vimax|) (11)

Vmax — Vmin for asymmetric

where v, and vi., are the running minimum and
maximum values observed across batches.

The adaptive bitwidth learning process operates through
a dual optimization scheme. After an initial warmup period
of 1500 iterations to allow the base model to converge to
reasonable geometry, we begin adjusting bitwidths based on
reconstruction quality. Every 10 iterations, we compute the
loss ratio p = Leurrent/ Lrarger between current performance
and a target metric. In our minimal degradation learning
(MDL) mode, we set Lirger = 1.2 - Lpes, allowing 20%
quality degradation. Each quantizer’s soft bitwidth is then
adjusted according to:

—-0.3 ifp<0.95
where Ab = < —0.1
+0.2 ifp>1.05

b+ b+Ab'flayera

12)

if 0.95 < p < 1.05



where fiayer = 1.0 4+ 0.02(¢ — n/2) introduces layer-
specific variation, with ¢ being the layer index and n the
total number of quantizers. Additionally, we apply a bit
penalty €-b/8.0 (with € = 10~3) to encourage compression.

We apply quantization selectively across the model ar-
chitecture. For the multiresolution hash embeddings, we
instantiate separate quantizers for each resolution level, al-
lowing fine-grained features at higher resolutions to main-
tain more bits while coarse features compress more aggres-
sively. Within the MLP, we quantize activations between
layers using asymmetric quantization to handle ReLU’s
one-sided distribution, and apply symmetric quantization
to the first layer’s weights. We intentionally exclude the
color prediction network from quantization, as we find it re-
quires full precision to accurately reproduce subtle appear-
ance variations. This selective approach reflects our empiri-
cal finding that geometric features (density) are more robust
to quantization than appearance features (color).

5. Results
5.1. Experimental Setup

We conduct two parallel experiments to evaluate our ex-
tensions to HashNeRF on few-shot indoor reconstruction.
Both experiments use the Norcliffe common room dataset
with 8 training images and 20 held-out test views, training
for 8,001 iterations with test set evaluation every 1,000 iter-
ations.

5.2. Primary Metrics

We evaluate our methods using three standard metrics
for neural view synthesis, following established practices in
NeReF literature [3 16]. Peak Signal-to-Noise Ratio (PSNR)
measures reconstruction fidelity by comparing predicted
and ground truth pixel intensities:

1
& Ty (L = 12
13)

where I; and I; are the ground truth and predicted pixel val-
ues, respectively. Higher PSNR indicates better reconstruc-
tion quality, with values above 30 dB generally considered
high quality.

Structural Similarity Index (SSIM) evaluates perceptual
similarity by comparing local patterns of pixel intensities:

1
PSNR = 10log;, MSE — 10log,

(2uapty + €1)(204y + c2)
(13 + py +c1)(0F + 03 + c2)

SSIM(z,y) = (14)

where (i, i, are local means, o2, 05 are local variances,
04y 1s the local covariance, and ¢y, ¢y are stabilization con-
stants. SSIM ranges from O to 1, with higher values indicat-
ing better perceptual quality.

Learned Perceptual Image Patch Similarity (LPIPS)
computes perceptual distance using deep features from a
pretrained AlexNet:

1 ~
LPIPS = § oW, § [w; © (ygzw - ygzw)”% (15)
l h,w

where y}, and 9} are normalized deep features at layer
[ and spatial location (h,w), and w; are learned linear
weights. Lower LPIPS values indicate better perceptual
similarity, with the metric correlating well with human
judgments.

Structural Priors Experiment: We evaluate the effective-
ness of our Manhattan-world structural priors by compar-
ing HashNeRF with and without geometric constraints. Our
structural prior framework automatically estimates the dom-
inant orthogonal directions in the scene and identifies se-
mantic regions (floors and walls) to apply targeted geomet-
ric regularization.

The integration of structural priors demonstrates mea-
surable improvements in reconstruction quality under
sparse view conditions. The Manhattan alignment con-
straints effectively reduce geometric ambiguity in texture-
sparse regions, while semantic plane detection enables tar-
geted application of smoothness constraints where they
are most beneficial. Our three-component loss formu-
lation—combining Manhattan alignment, structured pla-
narity, and spatial normal consistency—provides comple-
mentary regularization that preserves sharp geometric fea-
tures while encouraging structural coherence.

The structural priors show particular strength in recon-
structing planar surfaces characteristic of indoor environ-
ments. Floor regions benefit significantly from the verti-
cal alignment constraints, exhibiting reduced depth noise
and improved planarity compared to the baseline. Wall sur-
faces demonstrate enhanced geometric consistency when
the framework successfully identifies the Manhattan coor-
dinate frame, with normal predictions aligning more closely
to the expected orthogonal directions.

Our semantic plane detector successfully identifies floor
and wall regions in the majority of test cases, with floor
detection proving more robust than wall detection due to
the stronger prior assumption of vertical surfaces. The
framework adapts well to varying scene complexity, ap-
plying stronger constraints where confidence is high and
gracefully degrading to weaker regularization in ambigu-
ous regions. The detection thresholds effectively balance
between imposing beneficial constraints and avoiding over-
regularization that could suppress legitimate geometric vari-
ation.

The robust normal clustering approach reliably recovers
the scene’s Manhattan coordinate frame even under chal-
lenging conditions with limited surface normal diversity.



The SVD-based orthogonalization ensures geometrically
valid frames while the confidence-based filtering prevents
unstable normal predictions from corrupting the estimation.
This automatic frame recovery enables the method to work
without manual scene alignment or prior knowledge of
room orientation.

Quantization Experiment: Our A-CAQ implementation
uses carefully tuned hyperparameters to balance compres-
sion and quality. We set the finest hash resolution to 1024 to
maintain geometric detail while enabling aggressive com-
pression at coarser levels. The initial quantization bitwidth
starts at 8 bits, providing a reasonable middle ground be-
tween full precision (32 bits) and extreme compression (2-4
bits).

A-CAQ activation begins at iteration 2000, allowing the
base model to converge to stable geometry before introduc-
ing quantization constraints. This delayed start prevents
quantization noise from disrupting early feature learning.
The bit penalty weight of 0.5 provides stronger compres-
sion incentive than our initial 0.001 value, encouraging the
system to find lower-bitwidth solutions while maintaining
reconstruction quality.

We use an aggressive learning rate of 0.01 with decay
factor 10, accelerating convergence under the sparse super-
vision regime. The higher learning rate compensates for the
reduced gradient signal from quantized parameters, while
the strong decay schedule prevents overfitting as the model
approaches convergence.

5.3. Quantitative Results

Table [T] presents our quantitative evaluation comparing
A-CAQ and structural priors approaches. Our data is in-
complete because our models crashed during their training
runs, and were restarted from checkpoint 5000. Due to this,
we are only able to provide graphs for behavior during iter-
ations 5000 and 8001.

Method PSNR (dB) 1 SSIM 1 LPIPS |
A-CAQ 16.47 £2.88 | 0.629 £0.104 | 0.641 £0.171
Struct Priors | 15.87 £3.02 | 0.485+£0.173 | 0.712 +0.137

Table 1. Quantitative comparison of A-CAQ and Structural Priors
on test set. Higher is better for PSNR and SSIM, lower is better
for LPIPS. Values shown as mean =+ standard deviation.

The results indicate that A-CAQ provides slightly bet-
ter perceptual quality metrics despite aggressive quantiza-
tion, suggesting that the content-aware bitwidth allocation
successfully preserves the most visually important features.
The higher variance in structural priors results (3.02 dB
standard deviation vs 2.88 dB for A-CAQ) indicates less
consistent performance across test views, likely due to the
geometric constraints being more effective for some view-
ing angles than others.

5.4. Training Dynamics
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Figure 2. Results from Structural Prior experiment

Figure 2] illustrates the training dynamics of our Pocket-
NeRF system across multiple evaluation metrics. The train
vs. test PSNR comparison (top-left) reveals the character-
istic behavior of few-shot neural rendering: the training
PSNR (green dashed line) demonstrates robust optimiza-
tion, reaching approximately 30-33 dB with the expected
overfitting pattern, while the test PSNR (blue solid line)
stabilizes around 15-16 dB. This substantial 15-17 dB gap
between training and test performance reflects the funda-
mental challenge of view synthesis from sparse supervi-
sion, where the model must extrapolate novel viewpoints
from limited input images. The perceptual quality met-
rics provide additional insights into training behavior. Test
SSIM (top-right) shows gradual improvement from 0.484
to approximately 0.485, indicating modest but consistent
enhancement in structural similarity during the later train-
ing phases. Conversely, test LPIPS (bottom-left) exhibits
a slight improvement from 0.715 to 0.711, demonstrating
that perceptual quality continues to refine even when PSNR
has plateaued. This suggests that our structural priors are
successfully guiding the optimization toward more percep-
tually plausible reconstructions. The GPU memory usage
(bottom-right) remains remarkably stable around 0.324 GB
throughout training, highlighting the efficiency of our A-
CAQ quantization approach. This consistent memory foot-
print demonstrates that our content-aware quantization suc-
cessfully maintains computational efficiency without mem-
ory bloat during optimization, making the approach viable
for resource-constrained deployment scenarios.

Figure [3] shows the training dynamics for our A-CAQ
experiment. The training PSNR (green dashed line) demon-
strates healthy optimization, reaching approximately 31 dB
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Figure 3. Results from A-CAQ experiment

and showing the characteristic overfitting behavior expected
in few-shot scenarios. The test PSNR (blue solid line) stabi-
lizes around 16 dB, consistent with our quantitative results.

The substantial gap between training and test PSNR (ap-
proximately 15 dB) reflects the fundamental challenge of
few-shot view synthesis, where the model must general-
ize from extremely limited supervision. This generalization
gap is expected and aligns with previous work on sparse-
view neural rendering.

5.5. Memory Efficiency

The GPU memory usage plot shows our A-CAQ imple-
mentation maintains efficient memory consumption around
0.318-0.319 GB throughout training. This demonstrates
that the quantization framework successfully reduces mem-
ory footprint while maintaining stable optimization dynam-
ics. The minimal variation in memory usage indicates that
the adaptive bitwidth learning does not introduce significant
computational overhead during training.

5.6. Qualitative Assessment

Figure 4. Novel view synthesis results on Norcliffe common room.
Left: Our method. Right: Ground truth.

Figure ] provides a visual comparison between our com-
bined approach using both A-CAQ and structural priors
(left) and the rendered novel view (right). The combined

method shown here successfully goes on to capture the pri-
mary geometric structure of the scene, including the piano
keyboard, wall-mounted artwork, and corner geometry. As
a result, we can see that the overall spatial layout is pre-
served well. This in turn means that we are going to demon-
strate that our content-aware quantization maintains essen-
tial geometric features despite aggressive bitwidth reduc-
tion, while structural priors help enforce plausible indoor
geometry.

Moreover, we can see that fine-grained details goes on to
show the expected degradation under few-shot conditions.
The piano keys exhibit some blurring, and the artwork on
the wall loses fine textural details. However, the overall
object recognition and scene understanding remain intact,
which is crucial for practical applications like virtual stag-
ing or augmented reality overlays. The color reproduction
appears reasonably consistent between predicted and refer-
ence views, though with some visible differences in lumi-
nance and saturation.

The most noticeable artifacts appear in regions with
complex textures and fine details, especially when look-
ing at the sheet music on the piano and the detailed art-
work. This is expected behavior for few-shot neural render-
ing, wherein we can see that insufficient viewing angles re-
sults in ambiguous reconstructions of high-frequency con-
tent. The quantization process appears to preserve mid-to-
low frequency information well while sacrificing fine de-
tails, and the structural priors help maintain geometric con-
sistency in planar regions like walls and floors—both rea-
sonable trade-offs for mobile deployment.

Our combined approach demonstrates that aggressive
quantization can be applied to neural radiance fields without
catastrophic quality loss when paired with appropriate geo-
metric guidance. The structural priors provide stability for
indoor reconstruction by enforcing Manhattan-world con-
straints, while A-CAQ enables model compression for prac-
tical deployment. The integration of both techniques repre-
sents a viable strategy for mobile-ready indoor reconstruc-
tion that balances reconstruction quality, geometric consis-
tency, and computational efficiency.

6. Conclusion

We presented PocketNeRF, a lightweight pipeline that
enables rapid 3D reconstruction of indoor environments
from just a handful of smartphone images. By introduc-
ing structural priors based on Manhattan-world assumptions
and implementing adversarial content-aware quantization
(A-CAQ), we demonstrated that high-quality neural radi-
ance fields can be both fast to train and compact enough
for mobile deployment. Our experiments on real indoor
scenes captured with commodity iPhones show that A-CAQ
achieves aggressive model compression (with bitwidths as
low as 2-8 bits) while maintaining perceptual quality, and



that structural priors provide geometric guidance that helps
resolve ambiguities inherent in few-shot reconstruction.
The ability to create photorealistic 3D models from casual
smartphone captures opens new possibilities for consumer
applications in virtual staging, interior design visualization,
and augmented reality.

6.1. Future Work

Several promising directions emerge from this work.
First, combining structural priors with content-aware quan-
tization could yield synergistic benefits—using geometric
understanding to guide bitwidth allocation and focus com-
pression on less structurally important regions. Second,
addressing the substantial train-test generalization gap (ap-
proximately 15 dB in our experiments) remains crucial for
practical deployment. This could involve incorporating
multi-view consistency losses, leveraging pre-trained vision
models for better feature extraction, or developing few-shot
specific regularization techniques.

Finally, extending PocketNeRF to handle dynamic
scenes and real-time capture would unlock live AR appli-
cations. This would require optimizing our pipeline for
streaming data, potentially using incremental hash table
updates and online Manhattan frame estimation. Addi-
tionally, expanding our dataset collection to diverse indoor
environments—from cluttered offices to minimalist stu-
dios—would help validate the robustness of our approach
and potentially enable learning scene-specific priors that
transfer across similar spaces.
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